Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34873058

RESUMEN

Protein homeostasis is constantly being challenged with protein misfolding that leads to aggregation. Hsp70 is one of the versatile chaperones that interact with misfolded proteins and actively support their folding. Multifunctional Hsp70s are harnessed to specific roles by J-domain proteins (JDPs, also known as Hsp40s). Interaction with the J-domain of these cochaperones stimulates ATP hydrolysis in Hsp70, which stabilizes substrate binding. In eukaryotes, two classes of JDPs, Class A and Class B, engage Hsp70 in the reactivation of aggregated proteins. In most species, excluding metazoans, protein recovery also relies on an Hsp100 disaggregase. Although intensely studied, many mechanistic details of how the two JDP classes regulate protein disaggregation are still unknown. Here, we explore functional differences between the yeast Class A (Ydj1) and Class B (Sis1) JDPs at the individual stages of protein disaggregation. With real-time biochemical tools, we show that Ydj1 alone is superior to Sis1 in aggregate binding, yet it is Sis1 that recruits more Ssa1 molecules to the substrate. This advantage of Sis1 depends on its ability to bind to the EEVD motif of Hsp70, a quality specific to most of Class B JDPs. This second interaction also conditions the Hsp70-induced aggregate modification that boosts its subsequent dissolution by the Hsp104 disaggregase. Our results suggest that the Sis1-mediated chaperone assembly at the aggregate surface potentiates the entropic pulling, driven polypeptide disentanglement, while Ydj1 binding favors the refolding of the solubilized proteins. Such subspecialization of the JDPs across protein reactivation improves the robustness and efficiency of the disaggregation machinery.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Agregado de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Unión Proteica/fisiología , Dominios Proteicos/fisiología , Pliegue de Proteína , Proteostasis/fisiología , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/fisiopatología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
2.
Biomed Pharmacother ; 142: 111964, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34329823

RESUMEN

The dysfunctioning of ß-cells caused by the unspecific misfolding of the human islet amyloid polypeptide (hIAPP) at the membrane results in type 2 diabetes mellitus. Here, we report for the first time, the early-stage interaction of hIAPP oligomers on the DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) lipid membrane using electrochemical parameters. Electrochemical techniques are better than other techniques to detect hIAPP at significantly lower concentrations. The surface level interactions between the peptide (hIAPP) and lipid membrane (DMPC) were investigated using atomic force microscopy (AFM), confocal microscopy (CM) and electrochemical techniques such as Tafel polarization, cyclic voltammetry (CV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Inserting IAPP into the fluid domains results in breaking the lipid-to-lipid interaction, leading to restriction of membrane mobility. The SLateral values of the liposome and IAPP co-solubilized liposome indicates the cooperative insertion of IAPP. Further, a new method of immobilizing a membrane to the gold surface has been employed, resulting in an electrical contact with the buffer, preventing the direct utilization of a steady-state voltage across the bilayer. The electrochemical studies revealed that the charge transfer resistance decreased for 3-mercaptopropanoic acid modified gold (MPA-Au) electrode coated with the liposome and after the addition of IAPP, followed by an increase in the capacitance. The present study has opened up new dimensions to the understanding of peptide-membrane interactions and shows different experimental approaches for the future researchers in this domain.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Dimiristoilfosfatidilcolina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Deficiencias en la Proteostasis/fisiopatología , Técnicas Electroquímicas , Oro/química , Humanos , Membrana Dobles de Lípidos/metabolismo , Liposomas , Microscopía de Fuerza Atómica , Microscopía Confocal , Péptidos/metabolismo
3.
Biochemistry (Mosc) ; 86(3): 275-289, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33838629

RESUMEN

Aging is a prime systemic cause of various age-related diseases, in particular, proteinopathies. In fact, most diseases associated with protein misfolding are sporadic, and their incidence increases with aging. This review examines the process of protein aggregate formation, the toxicity of such aggregates, the organization of cellular systems involved in proteostasis, and the impact of protein aggregates on important cellular processes leading to proteinopathies. We also analyze how manifestations of aging (mitochondrial dysfunction, dysfunction of signaling systems, changes in the genome and epigenome) facilitate pathogenesis of various proteinopathies either directly, by increasing the propensity of key proteins for aggregation, or indirectly, through dysregulation of stress responses. Such analysis might help in outlining approaches for treating proteinopathies and extending healthy longevity.


Asunto(s)
Envejecimiento , Agregación Patológica de Proteínas , Deficiencias en la Proteostasis/metabolismo , Animales , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Proteostasis , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/fisiopatología
4.
Drug Discov Today ; 26(8): 1972-1979, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33892144

RESUMEN

Neurodegenerative disorders can arise as a result of amyloid-ß production and misfolding of its protein. The complex anatomy of the brain and the unresolved mechanics of the central nervous system hinder drug delivery; the brain is sheathed in a highly protective blood-brain barrier, a tightly packed layer of endothelial cells that restrict the entry of certain substances into the brain. Nanotechnology has achieved success in delivery to the brain, with preclinical assessments showing an acceptable concentration of active drugs in the therapeutic range, and nanoparticles can be fabricated to inhibit amyloid and enhance the delivery of the therapeutic molecule. This review focuses on the interactions of nanoparticles with amyloid-ß aggregates and provides an assessment of their theranostic potential.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Enfermedades Neurodegenerativas/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Humanos , Nanotecnología , Enfermedades Neurodegenerativas/fisiopatología , Deficiencias en la Proteostasis/tratamiento farmacológico , Deficiencias en la Proteostasis/fisiopatología , Nanomedicina Teranóstica
5.
Brain Dev ; 43(1): 45-54, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32736903

RESUMEN

In lysosomal diseases, enzyme deficiency is caused by misfolding of mutant enzyme protein with abnormal steric structure that is expressed by gene mutation. Chaperone therapy is a new molecular therapeutic approach primarily for lysosomal diseases. The misfolded mutant enzyme is digested rapidly or aggregated to induce endoplasmic reticulum stress. As a result, the catalytic activity is lost. The following sequence of events results in chaperone therapy to achieve correction of molecular pathology. An orally administered low molecular competitive inhibitor (chaperone) is absorbed into the bloodstream and reaches the target cells and tissues. The mutant enzyme is stabilized by the chaperone and subjected to normal enzyme proteinfolding (proteostasis). The first chaperone drug was developed for Fabry disease and is currently available in medical practice. At present three types of chaperones are available: competitive chaperone with enzyme inhibitory bioactivity (exogenous), non-competitive (or allosteric) chaperone without inhibitory bioactivity (exogenous), and molecular chaperone (heat shock protein; endogenous). The third endogenous chaperone would be directed to overexpression or activated by an exogenous low-molecular inducer. This new molecular therapeutic approach, utilizing the three types of chaperone, is expected to apply to a variety of diseases, genetic or non-genetic, and neurological or non-neurological, in addition to lysosomal diseases.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/terapia , Chaperonas Moleculares/uso terapéutico , Deficiencias en la Proteostasis/terapia , Estrés del Retículo Endoplásmico/fisiología , Enfermedad de Fabry/tratamiento farmacológico , Gangliosidosis GM1/tratamiento farmacológico , Humanos , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/fisiopatología , Lisosomas/metabolismo , Chaperonas Moleculares/metabolismo , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/fisiopatología
7.
Genetics ; 215(4): 889-901, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32759342

RESUMEN

Sustaining a healthy proteome is a lifelong challenge for each individual cell of an organism. However, protein homeostasis or proteostasis is constantly jeopardized since damaged proteins accumulate under proteotoxic stress that originates from ever-changing metabolic, environmental, and pathological conditions. Proteostasis is achieved via a conserved network of quality control pathways that orchestrate the biogenesis of correctly folded proteins, prevent proteins from misfolding, and remove potentially harmful proteins by selective degradation. Nevertheless, the proteostasis network has a limited capacity and its collapse deteriorates cellular functionality and organismal viability, causing metabolic, oncological, or neurodegenerative disorders. While cell-autonomous quality control mechanisms have been described intensely, recent work on Caenorhabditis elegans has demonstrated the systemic coordination of proteostasis between distinct tissues of an organism. These findings indicate the existence of intricately balanced proteostasis networks important for integration and maintenance of the organismal proteome, opening a new door to define novel therapeutic targets for protein aggregation diseases. Here, we provide an overview of individual protein quality control pathways and the systemic coordination between central proteostatic nodes. We further provide insights into the dynamic regulation of cellular and organismal proteostasis mechanisms that integrate environmental and metabolic changes. The use of C. elegans as a model has pioneered our understanding of conserved quality control mechanisms important to safeguard the organismal proteome in health and disease.


Asunto(s)
Caenorhabditis elegans/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Homeostasis , Proteoma/metabolismo , Deficiencias en la Proteostasis/fisiopatología , Proteostasis , Estrés Fisiológico , Animales , Humanos , Pliegue de Proteína , Transducción de Señal
8.
Biogerontology ; 21(5): 531-548, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32274599

RESUMEN

Proteinopathies are characterized by aging related accumulation of misfolded protein aggregates. Irreversible covalent modifications of aging proteins may significantly affect the native three dimentional conformation of proteins, alter their function and lead to accumulation of misfolded protein as dysfunctional aggregates. Protein misfolding and accumulation of aberrant proteins are known to be associated with aging-induced proteinopathies such as amyloid ß and tau proteins in Alzheimer's disease, α-synuclein in Parkinson's disease and islet amyloid polypeptides in Type 2 diabetes mellitus. Protein oxidation processes such as S-nitrosylation, dityrosine formation and some of the newly elucidated processes such as carbamylation and citrullination recently drew the attention of researchers in the field of Gerontology. Studying over these processes and illuminating their relations between proteinopathies may help to diagnose early and even to treat age related disorders. Therefore, we have chosen to concentrate on aging-induced proteinopathic nature of these novel protein modifications in this review.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Enfermedad de Parkinson/fisiopatología , Deficiencias en la Proteostasis/fisiopatología , Envejecimiento/patología , Biomarcadores , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos , alfa-Sinucleína , Proteínas tau
9.
Math Biosci Eng ; 17(3): 2470-2493, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32233549

RESUMEN

G-quadruplexes can form in protein coding and non-coding segments such as the untranslated regions and introns of the mRNA transcript of several genes. This implies that amino acid forms of the G-quadruplex may have important consequences for protein homeostasis and the diseases caused by their alterations thereof. However, the absence of a suitable model and multitude of predicted physical forms has precluded a comprehensive enumeration and analysis of potential translatable G-quadruplexes. In this manuscript a mathematical model of a short translatable G-quadruplex (TG4) in the protein coding segment of the mRNA of a hypothetical gene is presented. Several novel indices (α, ß) are formulated and utilized to categorize and select codons along with the amino acids that they code for. A generic algorithm is then iteratively deployed which computes the entire complement of peptide members that TG4 corresponds to, i.e., PTG4~TG4. The presence, distribution and relevance of this peptidome to protein sequence is investigated by comparing it with disorder promoting short linear motifs. In frame termination codon, co-occurrence, homology and distribution of overlapping/shared amino acids suggests that TG4 (~PTG4) may facilitate misfolding-induced proteostasis. The findings presented rigorously argue for the existence of a unique and potentially clinically relevant peptidome of a short translatable G-quadruplex that could be used as a diagnostic- or prognostic-screen of certain proteopathies.


Asunto(s)
G-Cuádruplex , Modelos Teóricos , Proteostasis , Codón/genética , Humanos , Proteostasis/fisiología , Deficiencias en la Proteostasis/diagnóstico , Deficiencias en la Proteostasis/fisiopatología , ARN Mensajero/genética
10.
Neurology ; 94(7): e718-e728, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852813

RESUMEN

OBJECTIVE: To evaluate resting-state functional connectivity as a potential prognostic biomarker of Parkinson disease (PD) progression. The study examined longitudinal changes in cortical resting-state functional connectivity networks in participants with PD compared to controls as well as in relation to baseline protein measures and longitudinal clinical progression. METHODS: Individuals with PD without dementia (n = 64) and control participants (n = 27) completed longitudinal resting-state MRI scans and clinical assessments including full neuropsychological testing after overnight withdrawal of PD medications ("off"). A total of 55 participants with PD and 20 control participants also completed baseline ß-amyloid PET scans and lumbar punctures for CSF protein levels of α-synuclein, ß-amyloid, and tau. Longitudinal analyses were conducted with multilevel growth curve modeling, a type of mixed-effects model. RESULTS: Functional connectivity within the sensorimotor network and the interaction between the dorsal attention network with the frontoparietal control network decreased significantly over time in participants with PD compared to controls. Baseline CSF α-synuclein protein levels predicted decline in the sensorimotor network. The longitudinal decline in the dorsal attention-frontoparietal internetwork strength correlated with the decline in cognitive function. CONCLUSIONS: These results indicate that α-synuclein levels may influence longitudinal declines in motor-related functional connectivity networks. Further, the interaction between cortical association networks declines over time in PD prior to dementia onset and may serve as a prognostic marker for the development of dementia.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/fisiopatología , Deficiencias en la Proteostasis/diagnóstico por imagen , Deficiencias en la Proteostasis/fisiopatología , Anciano , Biomarcadores/líquido cefalorraquídeo , Estudios Transversales , Progresión de la Enfermedad , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Tomografía de Emisión de Positrones , Descanso
11.
Sci Adv ; 5(5): eaaw5870, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31131329

RESUMEN

No current treatment targets cardiac proteotoxicity or can reduce mortality of heart failure (HF) with preserved ejection fraction (HFpEF). Selective degradation of misfolded proteins by the ubiquitin-proteasome system (UPS) is vital to the cell. Proteasome impairment contributes to HF. Activation of cAMP-dependent protein kinase (PKA) or cGMP-dependent protein kinase (PKG) facilitates proteasome functioning. Phosphodiesterase 1 (PDE1) hydrolyzes both cyclic nucleotides and accounts for most PDE activities in human myocardium. We report that PDE1 inhibition (IC86430) increases myocardial 26S proteasome activities and UPS proteolytic function in mice. Mice with CryABR120G-based proteinopathy develop HFpEF and show increased myocardial PDE1A expression. PDE1 inhibition markedly attenuates HFpEF, improves mouse survival, increases PKA-mediated proteasome phosphorylation, and reduces myocardial misfolded CryAB. Therefore, PDE1 inhibition induces PKA- and PKG-mediated promotion of proteasomal degradation of misfolded proteins and treats HFpEF caused by CryABR120G, representing a potentially new therapeutic strategy for HFpEF and heart disease with increased proteotoxic stress.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Insuficiencia Cardíaca/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Deficiencias en la Proteostasis/metabolismo , Cadena B de alfa-Cristalina/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Densitometría , Ecocardiografía , Femenino , Genotipo , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/metabolismo , Hemodinámica , Humanos , Hidrólisis , Masculino , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Miocitos Cardíacos/metabolismo , Fosforilación , Desnaturalización Proteica , Deficiencias en la Proteostasis/fisiopatología , Ratas
12.
Mol Psychiatry ; 24(7): 936-951, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30089789

RESUMEN

Chronic mental illnesses (CMI), such as schizophrenia or recurrent affective disorders, are complex conditions with both genetic and non-genetic elements. In many other chronic brain conditions, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia, sporadic instances of the disease are more common than gene-driven familial cases. Yet, the pathology of these conditions can be characterized by the presence of aberrant protein homeostasis, proteostasis, resulting in misfolded or aggregated proteins in the brains of patients that predominantly do not derive from genetic mutations. While visible deposits of aggregated protein have not yet been detected in CMI patients, we propose the existence of more subtle protein misassembly in these conditions, which form a continuum with the psychiatric phenotypes found in the early stages of many neurodegenerative conditions. Such proteinopathies need not rely on genetic variation. In a similar manner to the established aberrant neurotransmitter homeostasis in CMI, aberrant homeostasis of proteins is a functional statement that can only partially be explained by, but is certainly complementary to, genetic approaches. Here, we review evidence for aberrant proteostasis signatures from post mortem human cases, in vivo animal work, and in vitro analysis of candidate proteins misassembled in CMI. The five best-characterized proteins in this respect are currently DISC1, dysbindin-1, CRMP1, TRIOBP-1, and NPAS3. Misassembly of these proteins with inherently unstructured domains is triggered by extracellular stressors and thus provides a converging point for non-genetic causes of CMI.


Asunto(s)
Trastornos Mentales/fisiopatología , Agregación Patológica de Proteínas/fisiopatología , Deficiencias en la Proteostasis/fisiopatología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Disbindina , Humanos , Salud Mental , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso
13.
Arq Neuropsiquiatr ; 76(10): 705-712, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30427511

RESUMEN

Protein misfolding diseases are usually associated with deposits of single "key" proteins that somehow drive the pathology; ß-amyloid and hyperphosphorylated tau accumulate in Alzheimer's disease, α-synuclein in Parkinson's disease, or abnormal prion protein (PrPTSE) in transmissible spongiform encephalopathies (TSEs or prion diseases). However, in some diseases more than two proteins accumulate in the same brain. These diseases might be considered "complex" proteinopathies. We have studied models of TSEs (to explore deposits of PrPTSE and of "secondary proteins") infecting different strains and doses of TSE agent, factors that control incubation period, duration of illness and histopathology. Model TSEs allowed us to investigate whether different features of histopathology are independent of PrPTSE or appear as a secondary result of PrPTSE. Better understanding the complex proteinopathies may help to explain the wide spectrum of degenerative diseases and why some overlap clinically and histopathologically. These studies might also improve diagnosis and eventually even suggest new treatments for human neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas/fisiopatología , Enfermedades por Prión/fisiopatología , Animales , Modelos Animales de Enfermedad , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades por Prión/metabolismo , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/fisiopatología
14.
Arq. neuropsiquiatr ; 76(10): 705-712, Oct. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-973920

RESUMEN

ABSTRACT Protein misfolding diseases are usually associated with deposits of single "key" proteins that somehow drive the pathology; β-amyloid and hyperphosphorylated tau accumulate in Alzheimer's disease, α-synuclein in Parkinson's disease, or abnormal prion protein (PrPTSE) in transmissible spongiform encephalopathies (TSEs or prion diseases). However, in some diseases more than two proteins accumulate in the same brain. These diseases might be considered "complex" proteinopathies. We have studied models of TSEs (to explore deposits of PrPTSE and of "secondary proteins") infecting different strains and doses of TSE agent, factors that control incubation period, duration of illness and histopathology. Model TSEs allowed us to investigate whether different features of histopathology are independent of PrPTSE or appear as a secondary result of PrPTSE. Better understanding the complex proteinopathies may help to explain the wide spectrum of degenerative diseases and why some overlap clinically and histopathologically. These studies might also improve diagnosis and eventually even suggest new treatments for human neurodegenerative diseases.


RESUMEN La acumulación de proteínas con conformación anormal es observada en numerosas enfermedades degenerativas del sistema nervioso. Tales enfermedades están generalmente asociadas con el depósito de una proteína que es importante para la patogenia de la enfermedad; amiloide-β e hiperfosforilación de tau en la Enfermedad de Alzheimer, α-sinucleína en la Enfermedad de Parkinson, y acúmulo de proteína prion anormal (PrPTSE) en las encefalopatías espongiformes transmisibles (EET). Sin embargo, en algunas enfermedades más de dos proteínas se acumulan en el sistema nervioso central. Estas enfermedades pueden considerarse "proteinopatías complejas". Hemos estudiado varios modelos de EET para analizar los depósitos de PrPTSE y la posible acumulación de otras proteínas (que podríamos llamar "proteínas secundarias"). La relación entre proteínas mal plegadas y neurodegeneración no es claro. La mayor parte de las enfermedades neurodegenerativas evolucionan por décadas; por lo tanto los acúmulos proteicos podrían generar diferentes efectos patogénicos en los diferentes estadios de la enfermedad. Alternativamente los acúmulos proteicos podrían ser el resultado de alteraciones del sistema nervioso y no su causa. Dado que la etiología de las ETT es relativamente bien conocido y es atribuido a infección por agentes autoreplicantes que generan malformacion de la proteína prion normal (la isoforma patologica, PrPTSE, propuesta como el agente infeccioso) hemos estudiado varios modelos animales, cepas de agente infectante y dosis del agente causal de ETT. Estos factores controlan el período de incubación, duración de la enfermedad e histopatología. Los modelos animales estudiados nos han permitido investigar si las diferentes características histopatológicas son independientes de PrPTSE o podrían ser secundarias a la acumulación de la misma. Un mejor conocimiento de las proteinopatías complejas podría ayudar a analizar el espectro de enfermedades degenerativas y a su vez, investigar el motivo de la superposición clínico-patológico en algunas de ellas. Estos estudios podrían ayudar en el diagnóstico y eventualmente sugerir nuevas posibles terapéuticas para las enfermedades neurodegenerativas humanas.


Asunto(s)
Humanos , Animales , Enfermedades por Prión/fisiopatología , Enfermedades Neurodegenerativas/fisiopatología , Enfermedades por Prión/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Modelos Animales de Enfermedad , Deficiencias en la Proteostasis/fisiopatología , Deficiencias en la Proteostasis/metabolismo
15.
Neurology ; 91(13): e1245-e1254, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30135257

RESUMEN

OBJECTIVE: To retrospectively describe clinical and instrumental features of a cohort of patients with at least a 5-year history of idiopathic autonomic failure (IAF) longitudinally evaluated at the Autonomic Unit of the University of Bologna (IAF-Bo cohort). METHODS: We identified patients with at least a 5-year history of IAF who were referred to our department from 1989 to 2016 and evaluated at least once a year during the disease course. Clinical and instrumental data were collected from medical records. Clinical variables were categorized as early if presenting within 3 years from disease onset. Predictors associated with conversion to other synucleinopathies were identified in a Cox regression analysis. RESULTS: The IAF-Bo cohort included 50 patients (39 male, 19 deceased at the last follow-up). At the last follow-up visit, 34 patients retained IAF phenotype (ncIAF group), while 16 developed a CNS synucleinopathy (converters group). Specific clinical and instrumental features were represented differently in the converters and ncIAF groups. The converters group showed a higher risk of death than the ncIAF group. Early onset of urinary dysfunction, early onset of REM sleep behavior disorder, and a Valsalva ratio ≥1.25 were identified as variables associated with phenoconversion. CONCLUSIONS: This is one of the largest studies on the natural history of a cohort of patients with at least a 5-year history of IAF, showing a percentage of phenoconversion of 32%. We demonstrated that specific clinical and instrumental features entail an increased probability of phenoconversion. These findings could contribute to a better definition of the nature of IAF and to the identification of early markers of phenoconversion.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo/epidemiología , Enfermedades del Sistema Nervioso Autónomo/fisiopatología , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/epidemiología , Enfermedades Neurodegenerativas/fisiopatología , Deficiencias en la Proteostasis/epidemiología , Deficiencias en la Proteostasis/fisiopatología , Estudios Retrospectivos , Análisis de Supervivencia
16.
FEBS J ; 285(18): 3353-3361, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29890022

RESUMEN

Maintaining protein homeostasis (proteostasis) is essential for a functional proteome. A wide range of extrinsic and intrinsic factors perturb proteostasis, causing protein misfolding, misassembly, and aggregation. This compromises cellular integrity and leads to aging and disease, including neurodegeneration and cancer. At the cellular level, protein aggregation is counteracted by powerful mechanisms comprising of a cascade of enzymes and chaperones that operate in a coordinated multistep manner to sense, prevent, and/or dispose of aberrant proteins. Although these processes are well understood for soluble proteins, there is a major gap in our understanding of how cells handle misfolded or aggregated membrane proteins. This article provides an overview of cellular proteostasis with emphasis on membrane protein substrates and suggests host-virus interaction as a tool to clarify outstanding questions in proteostasis.


Asunto(s)
Interacciones Huésped-Patógeno , Chaperonas Moleculares , Agregación Patológica de Proteínas , Proteoma/metabolismo , Deficiencias en la Proteostasis/fisiopatología , Proteostasis , Animales , Humanos
17.
Expert Rev Clin Pharmacol ; 11(6): 611-624, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29851355

RESUMEN

INTRODUCTION: Conformational diseases are caused by structurally abnormal proteins that cannot fold properly and achieve their native conformation. Misfolded proteins frequently originate from genetic mutations that may lead to loss-of-function diseases involving a variety of structurally diverse proteins including enzymes, ion channels, and membrane receptors. Pharmacoperones are small molecules that cross the cell surface plasma membrane and reach their target proteins within the cell, serving as molecular scaffolds to stabilize the native conformation of misfolded or well-folded but destabilized proteins, to prevent their degradation and promote correct trafficking to their functional site of action. Because of their high specificity toward the target protein, pharmacoperones are currently the focus of intense investigation as therapy for several conformational diseases. Areas covered: This review summarizes data on the mechanisms leading to protein misfolding and the use of pharmacoperone drugs as an experimental approach to rescue function of distinct misfolded/misrouted proteins associated with a variety of diseases, such as lysosomal storage diseases, channelopathies, and G protein-coupled receptor misfolding diseases. Expert commentary: The fact that many misfolded proteins may retain function, offers a unique therapeutic opportunity to cure disease by directly correcting misrouting through administering pharmacoperone drugs thereby rescuing function of disease-causing, conformationally abnormal proteins.


Asunto(s)
Canalopatías/tratamiento farmacológico , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Deficiencias en la Proteostasis/tratamiento farmacológico , Animales , Canalopatías/genética , Canalopatías/fisiopatología , Diseño de Fármacos , Humanos , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/fisiopatología , Chaperonas Moleculares/metabolismo , Mutación , Pliegue de Proteína , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/fisiopatología , Receptores Acoplados a Proteínas G/metabolismo
18.
Brain Dev ; 40(9): 819-823, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29907476

RESUMEN

BACKGROUND: Tubulinopathies include a wide spectrum of disorders ranging from abnormal ocular movement to severe brain malformations, and typically present as diffuse agyria or perisylvian pachygyria with microcephaly, agenesis of the corpus callosum, and cerebellar hypoplasia. They are caused by the dysfunction of tubulins encoded by tubulin-related genes, and the TUBA1A gene encoding alpha-1A tubulin is most frequently responsible for this clinical entity. Porencephaly is relatively rare among patients with the TUBA1A mutations. Mild case of tubulinopathy associated with porencephaly caused by a novel TUBA1A mutation. CASE REPORT: The patient, a 10-month-old girl, presented with gross motor delay at 4 months of age and convulsions at 7 months of age. Brain magnetic resonance imaging showed porencephaly, occipital polymicrogyria, hypoplasia of the corpus callosum, volume loss of the white matter, dysgenesis of anterior limbs of internal capsules, non-separative basal ganglia, cerebellar hypoplasia, and dysplastic brainstem. We identified a novel de novo heterozygous missense mutation in the TUBA1A gene, c.381C > A (p.Asp127Glu), by whole-exome sequencing. DISCUSSION: Microtubules composed of tubulins regulate not only neuronal migration but also cell division or axon guidance. Accordingly, tubulinopathy affects the cortical lamination, brain size, callosal formation, and white matter as seen in the present case. In contrast to the previously reported cases, the present case showed milder cortical dysgenesis with a rare manifestation of porencephaly. The genotype-phenotype correlation is still unclear, and this study expands the phenotypic range of tubulinopathy.


Asunto(s)
Mutación Missense , Porencefalia/genética , Deficiencias en la Proteostasis/genética , Tubulina (Proteína)/genética , Femenino , Humanos , Lactante , Fenotipo , Porencefalia/diagnóstico por imagen , Porencefalia/tratamiento farmacológico , Porencefalia/fisiopatología , Deficiencias en la Proteostasis/diagnóstico por imagen , Deficiencias en la Proteostasis/tratamiento farmacológico , Deficiencias en la Proteostasis/fisiopatología
19.
Neuroscience ; 377: 161-173, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29524634

RESUMEN

Intracellular accumulation of alpha-synuclein (α-syn) is a key pathological process evident in Lewy body dementias (LBDs), including Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB). LBD results in marked cognitive impairments and changes in cortical networks. To assess the impact of abnormal α-syn expression on cortical network oscillations relevant to cognitive function, we studied changes in fast beta/gamma network oscillations in the hippocampus in a mouse line that over-expresses human mutant α-syn (A30P). We found an age-dependent reduction in the power of the gamma (20-80 Hz) frequency oscillations in slices taken from mice aged 9-16 months (9+A30P), that was not present in either young 2-6 months old (2+A30P) mice, or in control mice at either age. The mitochondrial blockers potassium cyanide and rotenone both reduced network oscillations in a concentration-dependent manner in aged A30P mice and aged control mice but slices from A30P mice showed a greater reduction in the oscillations. Histochemical analysis showed an age-dependent reduction in cytochrome c oxidase (COX) activity, suggesting a mitochondrial dysfunction in the 9+A30P group. A deficit in COX IV expression was confirmed by immunohistochemistry. Overall, our data demonstrate an age-dependent impairment in mitochondrial function and gamma frequency activity associated with the abnormal expression of α-syn. These findings provide mechanistic insights into the consequences of over-expression of α-syn which might contribute to cognitive decline.


Asunto(s)
Ritmo Gamma , Hipocampo/fisiopatología , Mitocondrias/fisiología , Deficiencias en la Proteostasis/fisiopatología , alfa-Sinucleína/metabolismo , Envejecimiento/patología , Envejecimiento/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/fisiopatología , Deficiencias en la Proteostasis/patología , Técnicas de Cultivo de Tejidos , alfa-Sinucleína/genética
20.
Mol Biol Cell ; 29(3): 256-269, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29212875

RESUMEN

Aggregation processes can cause severe perturbations of cellular homeostasis and are frequently associated with diseases. We performed a comprehensive analysis of mitochondrial quality and function in the presence of aggregation-prone polypeptides. Despite a significant aggregate formation inside mitochondria, we observed only a minor impairment of mitochondrial function. Detoxification of aggregated reporter polypeptides as well as misfolded endogenous proteins inside mitochondria takes place via their sequestration into a specific organellar deposit site we termed intramitochondrial protein quality control compartment (IMiQ). Only minor amounts of endogenous proteins coaggregated with IMiQ deposits and neither resolubilization nor degradation by the mitochondrial protein quality control system were observed. The single IMiQ aggregate deposit was not transferred to daughter cells during cell division. Detoxification of aggregates via IMiQ formation was highly dependent on a functional mitochondrial fission machinery. We conclude that the formation of an aggregate deposit is an important mechanism to maintain full functionality of mitochondria under proteotoxic stress conditions.


Asunto(s)
Mitocondrias/patología , Mitocondrias/fisiología , Proteínas Mitocondriales/fisiología , Homeostasis , Mitocondrias/metabolismo , Orgánulos/metabolismo , Péptidos , Agregado de Proteínas/fisiología , Pliegue de Proteína , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/fisiopatología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tetrahidrofolato Deshidrogenasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA